Structure at the right edge of prosodic words in Blackfoot

Natalie Weber
April 24, 2017

1 Overview

- Consonants [m, n, s] pattern as a class in two ways at the right edge of stems in Blackfoot:
 1. **Derived Environment Effect**: When followed by suffixes, a process of consonant deletion targets stem-final [m, n, s] in certain contexts, but never [p t k].
 2. **Morpheme Structure Constraint**: Stems may end in long [m:, n:, s:], but not long *[p:, t:, k:]*.

Proposal: both processes are driven by mora licensing restrictions at the right edge of prosodic words. (e.g. both processes are driven by structure at the right edge of a constituent!)

2 Framework

- Optimality Theory (Prince and Smolensky 1993; McCarthy and Prince 1993b)
- Standard Moraic Theory (Hayes 1989)
- Prosodic Hierarchy (McCarthy and Prince 1986)

(1) Prosodic Elements

<table>
<thead>
<tr>
<th>Pwd</th>
<th>PWd</th>
<th>σ</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft</td>
<td>[root]</td>
<td>[root]</td>
<td>[root]</td>
</tr>
<tr>
<td>σ</td>
<td>μ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(where [root] = the root node of a feature tree, aka “a segment”)

(2) Sub-Prosodic Elements

<table>
<thead>
<tr>
<th>Labial</th>
<th>Alveolar</th>
<th>Palatal</th>
<th>Velar</th>
<th>Glottal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Central</td>
<td>Back</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i i̯</td>
<td>(c)</td>
<td>o o̯</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r r̯</td>
<td>a a̯</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Blackfoot phonology and syllable structure

- Blackfoot is an Algonquian language spoken in southern Alberta and northern Montana (Frantz 2009)

3.1 Contrastive length

- **Vowel length** is contrastive before singleton consonants, as in (3).
- **Analysis**: vowels are underlyingly mono- or bi-moraic (Hyman 1985; Hayes 1989; Pulleyblank 1994).

1. (3) *a. [a:k-olac-wa] ‘he will rope’ (Frantz 2009, p. 2)
 b. [a:k-o:kla-wa] ‘she’ll sponsor a Sundance’

2. (4) a. *V = μ*
 b. *V = μ μ*

 (root)

3. **Consonant length** is contrastive intervocically, as in (5).
4. **Analysis**: geminates are underlyingly moraic (Hayes 1989; Spaelti 2002; McCarthy and Prince 1986),

5. (5) a. *[m-utokis-a] ‘knee’
 b. *[m-o:tokis-a] ‘skin, hide’

6. (6) a. C = [root]
 b. C = μ

6. (8) a. [kI:po:ko:kUk:i] ‘please give me it!’
 b. *[kI:po:ko:kUk:i]*

3.2 Vowel length neutralization in closed syllables

- **Vowel length** is neutralized before geminates (7).

7. (7) Short vowels before geminates

8. (8) No long vowels before geminates

 a. [kpI:po:ko:kUk:i] ‘please give me it!’
 b. *[kpI:po:ko:kUk:i]*
 c. [nitI:kan] ‘my friend’
 d. *[nitI:kan]*
 e. [mI:zo:jI:n] ‘fur coat’
 f. *[mI:zo:jI:n]*
 g. [kI:si:stokI:so:ka:ki] ‘heat water!’
 h. *[kI:si:stokI:so:ka:ki]*

Many thanks to Doug Pulleyblank, Gunnar Hansson, Rose-Marie Dèchaine, Martina Wiltschko, Emily Elfner, Andrei Angelescu, Nick Kalivoda, Lisa Selkirk, the students in the LING 530B seminar at UBC, and participants at the Effects Of Constituency On Sentence Phonology workshop at UMass, Amherst for their comments. Many thanks as well to NC and BB for sharing their language with me. Nitsíkohtaahsi’taki!

I adopt the moraic analysis of Blackfoot [s] in Goad and Shimada (2013), where post-consonantal [s] is analyzed as a mono- or bimoraic syllable nucleus. The “V” in the Blackfoot syllable templates therefore stands for a vowel or moraic [s], and I do not include a discussion of C+s clusters here.
• Clusters of up to two consonants are allowed word-medially.2

• Vowel length is neutralized before clusters (9).

(9) SHORT VOWELS BEFORE CLUSTERS

(10) NO LONG VOWELS BEFORE CLUSTERS

a. [køʔkɪ] ‘corner’

b. [pæskɪn] ‘(a) dance’

c. [dəkʊtok^2] ‘rock’ (voiced)

d. [mmusːʔɪpæːx^3] ‘heart’ (voiceless)

(11) SINGLETON CONSONANT

(12) GEMINATE CONSONANT

(13) CONSONANT CLUSTER

CVC = σ σ

CVG = σ σ

CVC_C2 = σ σ

Analysis: Codas are moraic in Blackfoot.

– Singleton consonants (C) are parsed to the onset of a following syllable.

– Geminates (G) are parsed to a coda, because onsets cannot license moraic segments. Ambisyllabic ‘flopping’ ensures the following syllable has an onset (Hayes 1989).

– The first half of a cluster is parsed to a coda position, because complex codas and onsets are disallowed.

3.3 Analysis of vowel length neutralization

• Weight-By-Position is normally formulated as “Coda consonants must surface as moraic” (cf. Moren 1999, following Hayes 1989). No “coda” position in the Standard Moraic Theory! But we can use a correspondence constraint (McCarty and Prince 1993a).

(14) WEIGHT-BY-POSITION (WBP)

≈ ALIGN(σ, R, μ, R)

For every syllable (σ), there is a mora (μ) such that the right edge of the mora aligns with the right edge of the syllable.

(15) *[root]μ/μ

Assign a violation for every [root] segment linked to two moras. (“No bimoraic segments.”)

(16) BinMAX(σ, μ)

Assign a violation for every syllable which contains more than two moras. (“No trimoraic syllables.”)

(17) *μ/C

A mora must not be headed by a consonant. (Broselow, Chen, and Huffman 1997; Moren 1999)

(18) MAX-μ-IO

Assign a violation mark for every mora in the input that does not have a corresponding mora in the output. (“No mora deletion.”)

(19) DEP-μ-IO

Assign a violation mark for mora in the output that does not have a corresponding mora in the input. (“No mora epenthesis.”)

(20) FAITH-μ

If α is a segment in the input, and β is a corresponding segment in the output, then assign a violation mark if the number of moras linked to α and the number of moras linked to β is not equal. (“Don’t change links between segments and moras.”)

(21) BinMAX(σ, μ) WBP

FAITH-μα

*[root]μ/μ

*μ/C

Analysis: mora deletion must occur to avoid violations of BinMAX(σ, μ).

• Vowels are preferentially affected in order to avoid violations of WBP.

(22) /køʔkɪ^2/ | BinMAX(σ, μ) | WBP | FAITH-μ | *[root]μ/μ | *μ/C

a. σ σ

b. σ σ

c. σ σ

2The distribution of consonants in clusters is highly constrained, which I abstract away from here. Briefly, the first consonant in a cluster is limited to [ʔ x]. Short [ʃ] occurs only before [t] and forms a complex onset with it, because vowel length is not neutralized before [st] as it is before codas. For an alternative analysis with complex Onsets, see Elifner (2006).

3This position also contains MAX-μ-IO and DEP-μ-IO, which are as of yet unranked. I leave them out of this tableau for space.
4 Word-final syllable structure

- Problem: this analysis does not explain word-final syllable structure!
- Wider range of syllable structures allowed: CV, CVV, CVC, CVVC, CVCC
- Word-final consonants do not pattern with word-medial codas.

1. Two consonants allowed word-finally, unlike medial codas.
2. Vowel length remains contrastive before a final singleton consonant, unlike before medial codas.

(23) a. [iapit] 'look!' (24) a. [apit] 'sit'
b. [pskán] 'buffalo jump' b. [pskán] '(a) dance'

4.1 Analysis of word-final consonants

- Analysis: word-final consonants can be parsed to the PWord (ω) (cf. Rubach and Booij 1990).
- Doing so satisfies WBP and BinMax(σ,μ), but violates a markedness constraint against this structure (Parse-Into-σ).

(25) Final Short V

(26) Final Long V

(27) Final Cluster

(28) Parse-Into-σ

Every element of the terminal string is parsed at the syllable-level.\(^5\) (One of the Parse-Into-X family of constraints in Ito and Mester 2009).

- Two strategies at the right edge of the word.
 1. If you can do it without deleting a mora, parse final consonant to syllable coda.
 2. If you have to delete a mora, parse final consonant to the prosodic word.

\(^4\) Additionally, the final consonant slot hosts a wider range of segments than allowed in word-medial coda positions.

\(^5\) Parse-Into-σ must also be ranked this high, since we do not find extra-syllabic consonants at the edge of word-medial feet.
5 The right-edge of the Blackfoot noun stem

- Consonants [m, n, s] pattern as a class in two ways at the right edge of stems:

 1. **Derived environment effect**: When followed by suffixes, a process of consonant deletion targets stem-final [m, n, s] in certain contexts, but not long *[p, t, k]*.

 2. **Morpheme structure constraint**: Stems may end in long [m; n; s], but not long *[p; t; k]*.

5.1 Derived environment effects

- Final short [m, n, s] delete before most suffixes, but other final segments do not.

- Observation: deletion is regulated by segment type and syllable structure.

(32) **Short [m, n, s] after short vowels**

<table>
<thead>
<tr>
<th>Stem</th>
<th>Singular</th>
<th>Plural</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. sōkaʔšaʔm</td>
<td>sōkaʔšaʔm-ʔ</td>
<td>sōkaʔšaʔs-ʔ</td>
<td>‘shirt, dress, outerwear’</td>
</tr>
<tr>
<td>b. átōʔqaxm</td>
<td>átōʔqaxm-ʔ</td>
<td>átōʔqaxs-ʔ</td>
<td>‘sock’</td>
</tr>
<tr>
<td>c. ašikin</td>
<td>ašikin-ʔ</td>
<td>ašikis-ʔ</td>
<td>‘shoe’</td>
</tr>
<tr>
<td>d. akčkoan</td>
<td>akčkoan-ʔ</td>
<td>akčkor-ʔ</td>
<td>‘girl’</td>
</tr>
<tr>
<td>e. mojįs</td>
<td>mojįs-ʔ</td>
<td>mojįs-ʔ</td>
<td>‘lodge’</td>
</tr>
<tr>
<td>f. atsąs</td>
<td>atsąs-ʔ</td>
<td>atsąs-ʔ</td>
<td>‘pants’</td>
</tr>
</tbody>
</table>

(33) **Short [m, n, s] consonants after long vowels**

<table>
<thead>
<tr>
<th>Stem</th>
<th>Singular</th>
<th>Plural</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. awr̂stam</td>
<td>awr̂stam-ʔ</td>
<td>awr̂stam-iks-ʔ</td>
<td>‘flag’</td>
</tr>
<tr>
<td>b. atap̂m</td>
<td>atap̂m-ʔ</td>
<td>atap̂m-iks-ʔ</td>
<td>‘doll’</td>
</tr>
<tr>
<td>c. napajin</td>
<td>napajin-ʔ</td>
<td>napajin-iks-ʔ</td>
<td>‘bread’</td>
</tr>
<tr>
<td>d. sîʔkan</td>
<td>sîʔkan-ʔ</td>
<td>sîʔkan-iks-ʔ</td>
<td>‘blanket’</td>
</tr>
<tr>
<td>e. pós</td>
<td>pós-ʔ</td>
<td>pós-iks-ʔ</td>
<td>‘cat’</td>
</tr>
</tbody>
</table>

(34) **Long [m, n, s] consonants after short vowels**

<table>
<thead>
<tr>
<th>Stem</th>
<th>Singular</th>
<th>Plural</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. kîšm</td>
<td>kîšm-ʔ</td>
<td>kîšm-iks-ʔ</td>
<td>‘door’</td>
</tr>
<tr>
<td>b. mîʔkx̂m</td>
<td>mîʔkx̂m-ʔ</td>
<td>mîʔkx̂m-iks-ʔ</td>
<td>‘metal’</td>
</tr>
<tr>
<td>c. mânn̂</td>
<td>mânn̂-ʔ</td>
<td>mânn̂-iks-ʔ</td>
<td>‘wing’</td>
</tr>
<tr>
<td>d. ox̂ım</td>
<td>ox̂ım-ʔ</td>
<td>ox̂ım-iks-ʔ</td>
<td>‘necklace’</td>
</tr>
<tr>
<td>e. katojįs</td>
<td>katojįs-ʔ</td>
<td>katojįs-iks-ʔ</td>
<td>‘sweet pine’</td>
</tr>
</tbody>
</table>

(35) **Short consonants after short or long vowels (shown together)**

<table>
<thead>
<tr>
<th>Stem</th>
<th>Singular</th>
<th>Plural</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. niʔp</td>
<td>niʔp-ʔ</td>
<td>niʔp-iks-ʔ</td>
<td>‘leaf’</td>
</tr>
<tr>
<td>b. moxkấʔs-ʔ</td>
<td>moxkấʔs-ʔ</td>
<td>moxkấʔs-iks-ʔ</td>
<td>‘leg’</td>
</tr>
<tr>
<td>c. matấk̂-ʔ</td>
<td>matấk̂-ʔ</td>
<td>matấk̂-iks-ʔ</td>
<td>‘potato’</td>
</tr>
<tr>
<td>d. motấk̂-ʔ</td>
<td>motấk̂-ʔ</td>
<td>motấk̂-iks-ʔ</td>
<td>‘shadow’</td>
</tr>
</tbody>
</table>

(36) **Final consonant cluster**

<table>
<thead>
<tr>
<th>Stem</th>
<th>Singular</th>
<th>Plural</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. kejʔskâxp̂</td>
<td>kejʔskâxp̂-ʔ</td>
<td>kejʔskâxp̂iks-ʔ</td>
<td>‘porcupine’</td>
</tr>
<tr>
<td>b. pâkiʔp̂</td>
<td>pâkiʔp̂-ʔ</td>
<td>pâkiʔp̂iks-ʔ</td>
<td>‘cheokeerry’</td>
</tr>
<tr>
<td>c. mo̕psp̂</td>
<td>mo̕psp̂-ʔ</td>
<td>mo̕psp̂iks-ʔ</td>
<td>‘eye’</td>
</tr>
<tr>
<td>d. --</td>
<td>nokŝts-ʔ</td>
<td>nokŝtsiks-ʔ</td>
<td>‘my mother’</td>
</tr>
<tr>
<td>e. --</td>
<td>n̂mn̂ŝ-ʔ</td>
<td>n̂mn̂ŝiks-ʔ</td>
<td>‘my older sister’</td>
</tr>
<tr>
<td>f. ̂sk̂ĉ</td>
<td>̂sk̂ĉ-ʔ</td>
<td>̂sk̂ĉiks-ʔ</td>
<td>‘pail’</td>
</tr>
<tr>
<td>g. onistsăxs</td>
<td>onistsăxs-ʔ</td>
<td>onistsăxsiks-ʔ</td>
<td>‘‘cali’</td>
</tr>
<tr>
<td>h. --</td>
<td>n̂koʔr̂ŝ-ʔ</td>
<td>n̂koʔr̂ŝiks-ʔ</td>
<td>‘my child’</td>
</tr>
</tbody>
</table>

- (Today: focusing on alternations before plural suffixes.)
- Deletion happens to singleton consonants after short vowels
 - Not to geminates or clusters
 - Not to singleton consonants after long vowels
 - … but only to [m, n, s]

- Question: Before plurals, why do short consonants delete after short vowels but not long vowels?
 - Parsing the consonant to an onset position in both position satisfies syllable structure constraints!

(37) | Stem | Singular | Plural | Gloss |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. a ŵŝt̂a:m̂-ʔ</td>
<td>a ŵŝt̂a:m̂-iks-ʔ</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b. a ŵŝt̂a:m̂-ʔ</td>
<td>a ŵŝt̂a:m̂-iks-ʔ</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

(38) | Stem | Singular | Plural | Gloss |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. so kấʔŝi: mi:ŝi:ʔ</td>
<td>so kấʔŝi: mi:ŝi:iks-ʔ</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>b. so kấʔŝi: mi:ŝi:ʔ</td>
<td>so kấʔŝi: mi:ŝi:iks-ʔ</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

- The answer has to do with a morpheme structure constraint.

5.2 Morpheme structure constraint

- Noun stems never end in long *[p; t; k]*.

- Examples below shown followed by singular suffixes; consonant length is distinctive intervocally.
If the right edge of a PStem is also the right edge of the prosodic word:

- Analysis: nasals are [+cont] in Blackfoot and pattern with the fricative [s] (Mielke 2008).
- Positional markedness constraint: moraic [-cont] segments prohibited at the right edge of a prosodic stem.

5.3 Proposal

- Question: Before plurals, why do short consonants delete after short vowels but not long vowels?
- Because the bare stem has a different syllable structure at the right edge in either case:

5.3 Proposal

- Proposal: Output-to-output mora faithfulness is ranked high (e.g. Benua 1997).
- If a form cannot maintain the same moraic representation, it is better to delete.
Faithfulness to moras in the input is even more important, which accounts for word-final geminates.

(54)

<table>
<thead>
<tr>
<th>ki>tsim</th>
<th>FAITH-μ</th>
<th>IDENT-μ-OO</th>
<th>MAX-IO</th>
<th>*[root][μ]μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ki.ści.μısı</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. μ ki.ści.m.ısı</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. ki.ści.ści</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Question (again): Why do stem-final [p, t, k] never exhibit deletion in any context?
- Because the *[cont]-μ[PStem] constraint ensures that stem-final [p, t, k] is non-moraic.
- Therefore the IDENT-μ-OO constraint is always satisfied, and there is no need to resort to deletion.

(55) AFTER SHORT V: FINAL [k] NON-MORAIC
(56) AFTER LONG V: FINAL K NON-MORAIC

(57) (For IDENT-μ-OO, compare to (55))

<table>
<thead>
<tr>
<th>motak.ksi</th>
<th>FAITH-μ</th>
<th>IDENT-μ-OO</th>
<th>MAX-IO</th>
<th>*[root][μ]μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. μ mot.tk.ksi</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. motak.ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. mot.tr.ksi</td>
<td>*!</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(58) (For IDENT-μ-OO, compare to (56))

<table>
<thead>
<tr>
<th>matak.isti</th>
<th>FAITH-μ</th>
<th>IDENT-μ-OO</th>
<th>MAX-IO</th>
<th>*[root][μ]μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. μ matak.ksi</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>b. matak.ksi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. matak.ksi</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>**</td>
</tr>
</tbody>
</table>

5.4 Summary

- Consonants [m, n, s] pattern as a class in two ways at the right edge of stems in Blackfoot.
- Both processes are driven by mora licensing restrictions at the right edge of prosodic words.

1. A consonant can be parsed directly to a prosodic word at the right edge of a prosodic stem (section 4)
2. Moraic [-cont] are prohibited at the right edge of a prosodic stem (subsection 5.2)
3. When the right edge of a stem coincides with the right edge of a prosodic word, the effect is that [-cont] segments are parsed directly to a prosodic word.
4. The phonological output of a bare stem regulates the outputs of larger words as well, and requires that corresponding segments have the same moraic output (subsection 5.3)
 - Geminates that are not [-cont] are moraic in both contexts: good!
 - Any final consonant parsed to the ki in the bare stem context, including all [-cont] segments, will be non-moraic in both contexts: good!
 - Final syllable-internal codas, including short [m n s], will be moraic in the bare stem context, but non-moraic in the larger word context: bad! (Last resort: delete.)

6 Predictions and questions

- Word-final singleton consonants after short vowels are parsed in two different ways, depending on whether they are [+cont] or [-cont].
 - Expect a (non-contrastive) difference in vowel duration
- Word-final singleton and geminate consonants have the same prosodic structure.
 - Consonant duration should be neutralized.
- Why deletion? (MAX-IO ranked low; we expect other languages to exhibit different repair strategies.)
- Do we need a PStem constituent which is separate than a PWord constituent in the prosodic hierarchy?

References

