Effects of Cosmetic Tongue Bifurcation on English Fricative Production

Alyson Budd
Murray Schellenberg
Bryan Gick

18th International Congress of Phonetic Sciences 2015

Interdisciplinary Speech Research Laboratory

ICPhS XVIII Glasgow, 10-14 August 2015 Wednesday, August 12, 2015 Session 8.8, Paper 3 (12:00-12:15)
Q: What is bifurcation?

A: An elective body modification.
Why study tongue bifurcation?
- it’s a novel and growing population of speakers
- expand on case studies (e.g. Bressmann, 2004, Tomaszek, 2015)
- to learn more about the tongue
Principles & Goals

• Core principles of the project:
 o *no value judgment* on individual’s decisions
 o neither deter nor encourage bifurcation
 o gather information and provide evidence

• Goals
 o contribute to the small but growing body of evidence regarding bifurcation and speech
 o offer evidence that can better inform decisions
The Research Question

• Does the speech of bifurcants differ from the speech of controls?
 o elicited speech to look at:
 ▶ 6 Fricatives in English: s, z, θ, ð, š, ʒ
 o Qualitative:
 ▶ sound atypical? How?
 o Quantitative:
 ▶ CoG of the fricatives different? How?

• Conclusion:
 o as a group, bifurcants have more atypical fricatives and different CoG measurements than controls

@alysonbudd
Methods - Participants

Bifurcants
- 12 participants
 - Age range 20 – 40
 - 4 women, 4 men, 1 transgender man, 2 genderqueer persons, 1 genderfluid person

<table>
<thead>
<tr>
<th>Age at study</th>
<th>Gender</th>
<th>Bifurc Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Genderqueer</td>
<td>0.5</td>
</tr>
<tr>
<td>27</td>
<td>F</td>
<td>1.5</td>
</tr>
<tr>
<td>22</td>
<td>Transgender Man</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>F</td>
<td>5</td>
</tr>
<tr>
<td>28</td>
<td>Genderqueer</td>
<td>7</td>
</tr>
<tr>
<td>25</td>
<td>F</td>
<td>7</td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>7</td>
</tr>
<tr>
<td>27</td>
<td>Genderfluid</td>
<td>8</td>
</tr>
<tr>
<td>40</td>
<td>F</td>
<td>10</td>
</tr>
<tr>
<td>35</td>
<td>M</td>
<td>10</td>
</tr>
<tr>
<td>33</td>
<td>M</td>
<td>13</td>
</tr>
</tbody>
</table>

Controls
- 12 participants
 - Age range 20 – 50
 - 8 women, 4 men

<table>
<thead>
<tr>
<th>Age at study</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>M</td>
</tr>
<tr>
<td>28</td>
<td>F</td>
</tr>
<tr>
<td>44</td>
<td>M</td>
</tr>
<tr>
<td>37</td>
<td>F</td>
</tr>
<tr>
<td>25</td>
<td>M</td>
</tr>
<tr>
<td>50</td>
<td>M</td>
</tr>
<tr>
<td>24</td>
<td>F</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
</tr>
<tr>
<td>23</td>
<td>F</td>
</tr>
<tr>
<td>27</td>
<td>F</td>
</tr>
<tr>
<td>32</td>
<td>F</td>
</tr>
<tr>
<td>32</td>
<td>F</td>
</tr>
</tbody>
</table>
Unpacking “Atypicality”

- Clicky
 - like lips (or tongue tips) parting

- Slushy
 - like lateral fricative (or medial?)

- Whistley
 - tongue-teeth contact

sagittal head of [θ] from
http://smu-facweb.smu.ca/~s0949176/sammy/
• Elicited speech:
 o 6 blocks of 40 tokens
 o collect ~15 of each target fricative for analysis
 o target fricatives: s, z, θ, ð, ʃ, ʒ
Methods - Stimuli

- Tokens to elicit target fricatives
 - aʃa, asa, aza, aʒa, aθa, aða, oθo, ʌðɚ, isi

- Other tokens:
 - aɪa, ala,ipi, idi, ada, ata, atʃa,
Results - Quantitative

- **Data Analysis**
 - Praat measured Fricative Centre of Gravity
 - compare means & SD

top: z, õ, ð
bright: s, ʃ, θ
Qualitative Analysis

- What does the speech sound like?

1. “typical” theta
2. “slushy” theta
3. “slushy” theta
Results - Qualitative

• Percentage of fricatives rated as atypical

<table>
<thead>
<tr>
<th></th>
<th>[s]</th>
<th>[z]</th>
<th>[ʃ]</th>
<th>[ʒ]</th>
<th>[θ]</th>
<th>[ð]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIFU</td>
<td>19</td>
<td>34</td>
<td>23</td>
<td>19.26</td>
<td>41.71</td>
<td>34.30</td>
</tr>
<tr>
<td>Std</td>
<td>16.36</td>
<td>31.96</td>
<td>16.72</td>
<td>18.32</td>
<td>17.24</td>
<td>30.04</td>
</tr>
<tr>
<td>CONT</td>
<td>9.34</td>
<td>6.46</td>
<td>4.16</td>
<td>5.41</td>
<td>9.82</td>
<td>13.08</td>
</tr>
<tr>
<td>Std</td>
<td>5.39</td>
<td>6.42</td>
<td>0</td>
<td>0.21</td>
<td>6.63</td>
<td>16.06</td>
</tr>
</tbody>
</table>

@alysonbudd
Discussion

- **Bifurcation** = more variation in acoustic data
 - centre of gravity measurement more variable

- **Consistent distortions in some speech sounds**
 - theta most affected - interdental tongue contact and frication through groove or split in bifurcated tongue
 - distortions don’t happen every time, just more often

- **Bifurcants**: 7.67% – 60.36% atypical
- **Controls**: 3.37% - 15.28% atypical
Conclusions & Next Steps

- bifurcation will likely impact some speech sounds (fricatives)
- bifurcation will likely not impair comprehensibility
- individual differences mediate adaptation
- recommend neither for nor against bifurcation
- not all bifurcants can move tongue tips independently
- length of time ≠ effect on speech

Next steps:
- before / after testing
- biomechanical modeling in ArtiSynth
- analyze longer passages of speech (North Wind)
Thank you!

:-3

NSERC USRA grant

linguistics.ubc.ca/bifurcation
References & Recommended Readings

Acknowledgments:

- NSERC USRA grant, UBC Faculty of Arts Work Study program
- Praat scripts adapted from Mieta Lennes
- Joseph Stemberger for feedback and advice
- Kathleen Currie Hall for programming and scripting assistance
- Jonathan de Vries and Avery Ozburn for scripting and help
- Jen Abel for help, feedback and advice
- Noriko Yamane for Ultrasound training and assistance
- Tanya Tam and Nicole Anger for segmenting assistance
- Wini Murphey and Grace Wei for running the pilot
- All the ISRL labmates that helped and participated!
- Russ Foxx, professional body modification artist for help recruiting participants with bifurcated tongues

[linguistics.ubc.ca/bifurcation]